enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which it looks exactly the same for each rotation.

  3. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    For example: two 3D figures have mirror symmetry, but with respect to different mirror planes. two 3D figures have 3-fold rotational symmetry, but with respect to different axes. two 2D patterns have translational symmetry, each in one direction; the two translation vectors have the same length but a different direction.

  4. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin. Examples of odd functions are x, x 3, sin(x), sinh(x), and erf(x).

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3 , the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ , e ...

  6. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin. If = is in the domain of an odd function (), then () =. Examples of odd functions are:

  7. Dihedral group - Wikipedia

    en.wikipedia.org/wiki/Dihedral_group

    The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups represents the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.

  8. Burnside's lemma - Wikipedia

    en.wikipedia.org/wiki/Burnside's_lemma

    Burnside's lemma can compute the number of rotationally distinct colourings of the faces of a cube using three colours.. Let X be the set of 3 6 possible face color combinations that can be applied to a fixed cube, and let the rotation group G of the cube act on X by moving the colored faces: two colorings in X belong to the same orbit precisely when one is a rotation of the other.

  9. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    A regular n-sided polygon has rotational symmetry of order n. All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon.