Search results
Results from the WOW.Com Content Network
The transuranium (or transuranic) elements are the chemical elements with atomic number greater than 92, which is the atomic number of uranium.All of them are radioactively unstable and decay into other elements.
A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays , usually by emitting an alpha particle . The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes , making them useful for dating the age of the Earth .
Potassium titanyl phosphate (KTP) is an inorganic compound with the formula K + [TiO] 2+ PO 3− 4. It is a white solid. It is a white solid. KTP is an important nonlinear optical material that is commonly used for frequency-doubling diode-pumped solid-state lasers such as Nd:YAG and other neodymium -doped lasers .
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
Nuclear binding energy, the energy required to split a nucleus of an atom. Nuclear potential energy , the potential energy of the particles inside an atomic nucleus. Nuclear reaction , a process in which nuclei or nuclear particles interact, resulting in products different from the initial ones; see also nuclear fission and nuclear fusion .
The 10-cm Atom Probe, invented in 1973 by J. A. Panitz [9] was a “new and simple atom probe which permits rapid, in depth species identification or the more usual atom-by atom analysis provided by its predecessors ... in an instrument having a volume of less than two liters in which tip movement is unnecessary and the problems of evaporation ...
Ionic counting assumes unequal sharing of electrons in the bond. The more electronegative atom in the bond gains electron lost from the less electronegative atom. This method begins by calculating the number of electrons of the element, assuming an oxidation state. E.g. for a Fe 2+ has 6 electrons S 2− has 8 electrons
In a simulation, the potential energy of an atom, , is given by [3] = (()) + (), where is the distance between atoms and , is a pair-wise potential function, is the contribution to the electron charge density from atom of type at the location of atom , and is an embedding function that represents the energy required to place atom of type into the electron cloud.