Search results
Results from the WOW.Com Content Network
However, advancements in thin-film and quantum well technologies could increase efficiency up to 15% in the future. [5] The efficiency of an ATEG is governed by the thermoelectric conversion efficiency of the materials and the thermal efficiency of the two heat exchangers. The ATEG efficiency can be expressed as: [6] Ζ OV = ζ CONV х ζ HX х ...
Every human activity, transport and industrial process generates waste heat, being possible to harvest residual energy from cars, aircraft, ships, industries and the human body. [1] From cars the main source of energy is the exhaust gas. [32] Harvesting that heat energy using a thermoelectric generator can increase the fuel efficiency of the car.
Efficiency of power plants, world total, 2008. Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges ...
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
An electronic amplifier that delivers 10 watts of power to its load (e.g., a loudspeaker), while drawing 20 watts of power from a power source is 50% efficient. (10/20 × 100 = 50%) Electric kettle: more than 90% [citation needed] (comparatively little heat energy is lost during the 2 to 3 minutes a kettle takes to boil water).
However, 130/225 V, three-wire, two-phase electric power discontinued systems called B1 are used to run old installations in small groups of houses when only two of the three-phase high-voltage conductors are used. The phase shift in Europe is 120°, as is the case with three-phase current. That is why we calculate 130 V × √ 3 = 225 V.
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.
An electrical resistance heater, which is not considered efficient, has an HSPF of 3.41. [3] Depending on the system, an HSPF ≥ 9 can be considered high efficiency and worthy of a US Energy Tax Credit. [4] For instance, a system which delivers an HSPF of 7.7 will transfer 2.25 times as much heat as electricity consumed over a season. [5]