Search results
Results from the WOW.Com Content Network
The Ii antigen system is a human blood group system based upon a gene on chromosome 6 and consisting of the I antigen and the i antigen. [1] The I antigen is normally present on the cell membrane of red blood cells in all adults, while the i antigen is present in fetuses and newborns. [2]
The term human blood group systems is defined by the International Society of Blood Transfusion (ISBT) as systems in the human species where cell-surface antigens—in particular, those on blood cells—are "controlled at a single gene locus or by two or more very closely linked homologous genes with little or no observable recombination between them", [1] and include the common ABO and Rh ...
In some cells, antigens bind to recycled MHC class II molecules while they are in the early endosomes, while other cells such as dendritic cells internalize antigens via receptor-mediated endocytosis and create MHC class II molecules plus peptide in the endosomal-lysosomal antigen processing compartment which is independent of the synthesis of ...
The human leukocyte antigen (HLA) system is a complex of genes on chromosome 6 in humans that encode cell-surface proteins responsible for regulation of the immune system. [1] The HLA system is also known as the human version of the major histocompatibility complex (MHC) found in many animals.
The antigen receptor of T cells is the T-cell receptor (TCR), which is composed of two chains, either the TCR-alpha and -beta chains, or the TCR-delta and gamma chains. All TCR chains contain two Ig domains in the extracellular portion; one IgV domain at the N-terminus and one IgC1 domain adjacent to the cell membrane. Antigen presenting molecules
In contrast, the constant (C) regions only occur in a few variants, which define the antibody's class. Antibodies of different classes activate distinct effector mechanisms in response to an antigen (triggering different elements of the innate immune system). They appear at different stages of an immune response, differ in structural features ...
The discovery of the MHC and role of histocompatibility in transplantation was a combined effort of many scientists in the 20th century. A genetic basis for transplantation rejection was proposed in a 1914 Nature paper by C.C. Little and Ernest Tyyzer, which showed that tumors transplanted between genetically identical mice grew normally, but tumors transplanted between non-identical mice were ...
The adaptive immune system and antigen-specific receptor generation (TCR, antibodies) are responsible for adaptive immune memory. [citation needed] After the inflammatory immune response to danger-associated antigen, some of the antigen-specific T cells and B cells persist in the body and become long-living memory T and B cells. After the ...