Search results
Results from the WOW.Com Content Network
The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers , using addition and multiplication .
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
If (1 + z) 1/2 = 1 + a 1 z + a 2 z 2 + ⋯ is the binomial expansion for the square root (valid in |z| < 1), then as a formal power series its square equals 1 + z. Substituting N for z, only finitely many terms will be non-zero and S = √λ (I + a 1 N + a 2 N 2 + ⋯) gives a square root of the Jordan block with eigenvalue √λ.
Colours indicate the leading integer coefficient of the polynomial the number is a root of (red = 1 i.e. the algebraic integers, green = 2, blue = 3, yellow = 4...). Points becomes smaller as the other coefficients and number of terms in the polynomial become larger. View shows integers 0,1 and 2 at bottom right, +i near top.
Even more simply, at the expense of making these formulas longer, the integers in these formulas can be restricted to be only 0 and 1. [12] For instance, the square root of 2 is constructible, because it can be described by the formulas 2 {\displaystyle {\sqrt {2}}} or 1 + 1 {\displaystyle {\sqrt {1+1}}} .