enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  3. Cubic crystal system - Wikipedia

    en.wikipedia.org/wiki/Cubic_crystal_system

    The plane of a face-centered cubic lattice is a hexagonal grid. Attempting to create a base-centered cubic lattice (i.e., putting an extra lattice point in the center of each horizontal face) results in a simple tetragonal Bravais lattice. Coordination number (CN) is the number of nearest neighbors of a central atom in the structure. [1]

  4. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    The diamond crystal structure belongs to the face-centered cubic lattice, with a repeated two-atom pattern. In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices (an infinite infinite array of discrete points).

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    Bravais lattices, also referred to as space lattices, describe the geometric arrangement of the lattice points, [4] and therefore the translational symmetry of the crystal. The three dimensions of space afford 14 distinct Bravais lattices describing the translational symmetry.

  6. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group. These are the Bravais lattices in three dimensions:

  7. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    The simple cubic Bravais lattice, with cubic primitive cell of side , has for its reciprocal a simple cubic lattice with a cubic primitive cell of side (or in the crystallographer's definition). The cubic lattice is therefore said to be self-dual, having the same symmetry in reciprocal space as in real space.

  8. Pearson symbol - Wikipedia

    en.wikipedia.org/wiki/Pearson_symbol

    The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:

  9. Diamond cubic - Wikipedia

    en.wikipedia.org/wiki/Diamond_cubic

    Diamond's cubic structure is in the Fd 3 m space group (space group 227), which follows the face-centered cubic Bravais lattice. The lattice describes the repeat pattern; for diamond cubic crystals this lattice is "decorated" with a motif of two tetrahedrally bonded atoms in each primitive cell , separated by ⁠ 1 / 4 ⁠ of the width of the ...