Search results
Results from the WOW.Com Content Network
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [ 1 ] [ 2 ] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.
One of the most commonly encountered CRC polynomials is known as CRC-32, used by (among others) Ethernet, FDDI, ZIP and other archive formats, and PNG image format. Its polynomial can be written msbit-first as 0x04C11DB7, or lsbit-first as 0xEDB88320. This is a practical example for the CRC-32 variant of CRC. [5]
This is a list of hash functions, including cyclic redundancy checks, checksum functions, and cryptographic hash functions. This list is incomplete ; you can help by adding missing items . ( February 2024 )
cksum is a command in Unix and Unix-like operating systems that generates a checksum value for a file or stream of data. The cksum command reads each file given in its arguments, or standard input if no arguments are provided, and outputs the file's 32-bit cyclic redundancy check (CRC) checksum and byte count. [1]
A CRC is a checksum in a strict mathematical sense, as it can be expressed as the weighted modulo-2 sum of per-bit syndromes, but that word is generally reserved more specifically for sums computed using larger moduli, such as 10, 256, or 65535.
The checksum algorithms most used in practice, such as Fletcher's checksum, Adler-32, and cyclic redundancy checks (CRCs), address these weaknesses by considering not only the value of each word but also its position in the sequence. This feature generally increases the cost of computing the checksum.
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.
In this respect, the Fletcher checksum is not different from other checksum and CRC algorithms and needs no special explanation. An ordering problem that is easy to envision occurs when the data word is transferred byte-by-byte between a big-endian system and a little-endian system and the Fletcher-32 checksum is computed.