enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  3. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics , where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.

  4. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The central angle of a square is equal to 90° (360°/4). The external angle of a square is equal to 90°. The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel.

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Equidiagonal quadrilateral: the diagonals are of equal length. Bisect-diagonal quadrilateral: one diagonal bisects the other into equal lengths. Every dart and kite is bisect-diagonal. When both diagonals bisect another, it's a parallelogram. Ex-tangential quadrilateral: the four extensions of the sides are tangent to an excircle.

  6. Rhomboid - Wikipedia

    en.wikipedia.org/wiki/Rhomboid

    Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...

  7. Silver ratio - Wikipedia

    en.wikipedia.org/wiki/Silver_ratio

    The parallelogram between the pair of grey triangles on the sides has perpendicular diagonals in ratio ⁠ ⁠, hence is a silver rhombus. If the triangles have legs of length ⁠ 1 {\displaystyle 1} ⁠ then each discrete spiral has length σ σ − 1 = ∑ n = 0 ∞ σ − n . {\displaystyle {\frac {\sigma }{\sigma -1}}=\sum _{n=0}^{\infty ...

  8. Corresponding sides and corresponding angles - Wikipedia

    en.wikipedia.org/wiki/Corresponding_sides_and...

    The orange and green quadrilaterals are congruent; the blue one is not congruent to them. Congruence between the orange and green ones is established in that side BC corresponds to (in this case of congruence, equals in length) JK, CD corresponds to KL, DA corresponds to LI, and AB corresponds to IJ, while angle ∠C corresponds to (equals) angle ∠K, ∠D corresponds to ∠L, ∠A ...

  9. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    The ratio of the long diagonal to the short diagonal of each face is exactly equal to the golden ratio, φ, so that the acute angles on each face measure 2 arctan(⁠ 1 / φ ⁠) = arctan(2), or approximately 63.43°. A rhombus so obtained is called a golden rhombus.