Search results
Results from the WOW.Com Content Network
Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.
As stated above, the complexity of finding a convex hull as a function of the input size n is lower bounded by Ω(n log n). However, the complexity of some convex hull algorithms can be characterized in terms of both input size n and the output size h (the number of points in the hull). Such algorithms are called output-sensitive algorithms.
A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes: b 0 is the number of connected components; b 1 is the number of one-dimensional or "circular" holes;
A chordal graph, a special type of perfect graph, has no holes of any size greater than three. The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth.
The even-hole-free graphs are the graphs containing no induced cycles with an even number of vertices. The trivially perfect graphs are the graphs that have neither an induced path of length three nor an induced cycle of length four. By the strong perfect graph theorem, the perfect graphs are the graphs with no odd hole and no odd antihole.
It is the unique maximal convex function majorized by . [30] The definition can be extended to the convex hull of a set of functions (obtained from the convex hull of the union of their epigraphs, or equivalently from their pointwise minimum) and, in this form, is dual to the convex conjugate operation. [31]