enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Myelinogenesis - Wikipedia

    en.wikipedia.org/wiki/Myelinogenesis

    Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.

  3. Myelin - Wikipedia

    en.wikipedia.org/wiki/Myelin

    Myelin (/ ˈ m aɪ. ə l ɪ n / MY-ə-lin) is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. [1] [2] The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However ...

  4. Oligodendrocyte - Wikipedia

    en.wikipedia.org/wiki/Oligodendrocyte

    A single oligodendrocyte can extend its processes to cover up to 40 axons, that can include multiple adjacent axons. [2] The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1]

  5. Development of the nervous system in humans - Wikipedia

    en.wikipedia.org/wiki/Development_of_the_nervous...

    Activity-independent mechanisms are generally believed to occur as hardwired processes determined by genetic programs that are played out within individual neurons. These include differentiation, migration, and axon guidance to their initial target areas. These processes are thought of as being independent of neural activity and sensory experience.

  6. Oligodendrocyte progenitor cell - Wikipedia

    en.wikipedia.org/wiki/Oligodendrocyte_progenitor...

    OPCs play a critical role in developmental and adult myelinogenesis. They give rise to oligodendrocytes, which then wrap around axons and provide electrical insulation by forming a myelin sheath. This enables faster action potential propagation and high fidelity transmission without a need for an increase in axonal diameter. [2]

  7. Node of Ranvier - Wikipedia

    en.wikipedia.org/wiki/Node_of_Ranvier

    The action potential travels from one location in the cell to another, but ion flow across the membrane occurs only at the nodes of Ranvier. As a result, the action potential signal jumps along the axon, from node to node, rather than propagating smoothly, as they do in axons that lack a myelin sheath.

  8. Biological neuron model - Wikipedia

    en.wikipedia.org/wiki/Biological_neuron_model

    Fig. 1. Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals. The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact ...

  9. Axon guidance - Wikipedia

    en.wikipedia.org/wiki/Axon_guidance

    Axon guidance (also called axon pathfinding) is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.