Search results
Results from the WOW.Com Content Network
In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.
Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.
the population mean or expected value in probability and statistics; a measure in measure theory; micro-, an SI prefix denoting 10 −6 (one millionth) Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory
By 1910, inventor Mark Barr began using the Greek letter phi ( ) as a symbol for the golden ratio. [32] [e] It has also been represented by tau ( ), the first letter of the ancient Greek τομή ('cut' or 'section'). [35] Dan Shechtman demonstrates quasicrystals at the NIST in 1985 using a Zometoy model.
In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φ c) is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946.
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).
Greek letter Φ: majuscule U+03A6 Φ GREEK CAPITAL LETTER PHI and minuscule U+03C6 φ GREEK SMALL LETTER PHI are a part of the Greek alphabet. It sometimes take the form of U+03D5 ϕ GREEK PHI SYMBOL and is used as a sign in different fields of studies. The U+0278 ɸ LATIN SMALL LETTER PHI is used in the IPA for voiceless bilabial fricative.