Search results
Results from the WOW.Com Content Network
Neural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model.
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...
Machine translation is use of computational techniques to translate text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. Early approaches were mostly rule-based or statistical. These methods have since been superseded by neural machine translation [1] and large language models ...
Both rule-based and statistical models developed by IBM Research. Neural machine translation models available through the Watson Language Translator API for developers. [4] [5] Microsoft Translator: Cross-platform (web application) SaaS: No fee required: Final: No: 100+ Statistical and neural machine translation: Moses: Cross-platform: LGPL: No ...
In November 2016, Google Neural Machine Translation system (GNMT) was introduced. Since then, Google Translate began using neural machine translation (NMT) in preference to its previous statistical methods (SMT) [ 1 ] [ 16 ] [ 17 ] [ 18 ] which had been used since October 2007, with its proprietary, in-house SMT technology.
The RNNsearch model introduced an attention mechanism to seq2seq for machine translation to solve the bottleneck problem (of the fixed-size output vector), allowing the model to process long-distance dependencies more easily. The name is because it "emulates searching through a source sentence during decoding a translation".
Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.
Mamba LLM represents a significant potential shift in large language model architecture, offering faster, more efficient, and scalable models [citation needed]. Applications include language translation, content generation, long-form text analysis, audio, and speech processing [citation needed