Search results
Results from the WOW.Com Content Network
A bit array (also known as bitmask, [1] bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure . A bit array is effective at exploiting bit-level parallelism in hardware to perform operations quickly.
In computer science, a mask or bitmask is data that is used for bitwise operations, particularly in a bit field.Using a mask, multiple bits in a byte, nibble, word, etc. can be set either on or off, or inverted from on to off (or vice versa) in a single bitwise operation.
Bagwell [1] presented a time and space efficient solution for tries named Array Mapped Tree (AMT). The Hash array mapped trie (HAMT) is based on AMT. The compact trie node representation uses a bitmap to mark every valid branch – a bitwise trie with bitmap.
A bitmap is a type of memory organization or image file format used to store digital images. The term bitmap comes from the computer programming terminology, meaning just a map of bits, a spatially mapped array of bits. Now, along with pixmap, it commonly refers to the similar concept of a spatially mapped array of pixels.
A HAMT is an array mapped trie where the keys are first hashed to ensure an even distribution of keys and a constant key length. In a typical implementation of HAMT's array mapped trie, each node contains a table with some fixed number N of slots with each slot containing either a nil pointer or a pointer to another node. N is commonly 32.
[1] [2] A bit field is most commonly used to represent integral types of known, fixed bit-width, such as single-bit Booleans. The meaning of the individual bits within the field is determined by the programmer; for example, the first bit in a bit field (located at the field's base address ) is sometimes used to determine the state of a ...
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).
a = [3, 1, 5, 7] // assign an array to the variable a a [0.. 1] // return the first two elements of a a [.. 1] // return the first two elements of a: the zero can be omitted a [2..] // return the element 3 till last one a [[0, 3]] // return the first and the fourth element of a a [[0, 3]] = [100, 200] // replace the first and the fourth element ...