Search results
Results from the WOW.Com Content Network
The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = A − Z. [2] The mass number is written either after the element name or as a superscript to the left of an element's symbol.
Atomic mass is often measured in dalton (Da) or unified atomic mass unit (u). One dalton is equal to 1 ⁄ 12 the mass of a carbon-12 atom in its natural state. Thus, the numeric value of the atomic mass when expressed in daltons has nearly the same value as the mass number.
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
By definition, the atomic mass of carbon-12 is 12 Da, giving a molar mass of 12 g/mol. The number of molecules per mole in a substance is given by the Avogadro constant, exactly 6.022 140 76 × 10 23 mol −1 since the 2019 revision of the SI. Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is ...
Different isotopes of a given element are distinguished by their mass number, which is written as a superscript on the left hand side of the chemical symbol (e.g., 238 U). The mass number is always an integer and has units of "nucleons". Thus, magnesium-24 (24 is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons).
The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons. For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A.
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...