Search results
Results from the WOW.Com Content Network
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.
This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Thus, we may regard a smooth structure as a maximal smooth atlas and vice versa. In general, computations with the maximal atlas of a manifold are rather unwieldy.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
The atlas containing all possible charts consistent with a given atlas is called the maximal atlas (i.e. an equivalence class containing that given atlas). Unlike an ordinary atlas, the maximal atlas of a given manifold is unique. Though useful for definitions, it is an abstract object and not used directly (e.g. in calculations).
A differentiable atlas determines a maximal differentiable atlas, consisting of all charts which are differentiably compatible with the given atlas. A maximal atlas is always very large. For instance, given any chart in a maximal atlas, its restriction to an arbitrary open subset of its domain will also be contained in the maximal atlas.
A torus is an orientable surface The Möbius strip is a non-orientable surface. Note how the disk flips with every loop. The Roman surface is non-orientable.. In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "anticlockwise". [1]
A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following ...
In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counterintuitive, as the common meanings of open and closed are antonyms, but their mathematical definitions are not mutually exclusive.