Search results
Results from the WOW.Com Content Network
First-order logic also satisfies several metalogical theorems that make it amenable to analysis in proof theory, such as the Löwenheim–Skolem theorem and the compactness theorem. First-order logic is the standard for the formalization of mathematics into axioms, and is studied in the foundations of mathematics.
The propositional calculus [a] is a branch of logic. [1] It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [b] [6] [7] [8] Sometimes, it is called first-order propositional logic [9] to contrast it with System F, but it should not be confused with ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
The role of variables in propositional logic (something that can be true or false) is played in first-order logic by predicates. Namely, a propositional formula can be expressed in first-order logic by replacing each propositional variable with a predicate of zero arity (i.e., a predicate with no arguments). Therefore, minimization is done on ...
First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates the internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions ...
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have ...
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the ...
Truth-functional propositional logic and first-order predicate logic are semantically complete, but not syntactically complete (for example the propositional logic statement consisting of a single variable "a" is not a theorem, and neither is its negation, but these are not tautologies).