Search results
Results from the WOW.Com Content Network
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.
Axiom of Euclid. Three variants of this axiom can be given, labeled A, B and C below. They are equivalent to each other given the remaining Tarski's axioms, and indeed equivalent to Euclid's parallel postulate.
The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate. Equivalence here means that in the presence of the other axioms of the geometry each of these theorems can be assumed to be true and the parallel postulate can be proved from this altered set of axioms.
Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry, lines can have analogous properties that are referred to as parallelism.
Independence of the parallel postulate ; Infinite monkey theorem (probability) Integral root theorem (algebra, polynomials) Initial value theorem (integral transform) Inscribed angle theorem ; Integral representation theorem for classical Wiener space (measure theory) Intermediate value theorem ; Intercept theorem (Euclidean geometry)
This strong market position generates substantial cash flows that support shareholder returns. Turning to the specifics, the pharmaceutical giant offers investors a 4.3% dividend yield backed by a ...
The parallel postulate of Euclidean geometry is replaced with: For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.)