Search results
Results from the WOW.Com Content Network
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
In mathematics, the second moment method is a technique used in probability theory and analysis to show that a random variable has positive probability of being positive. More generally, the "moment method" consists of bounding the probability that a random variable fluctuates far from its mean, by using its moments.
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
Pages in category "Moment (mathematics)" The following 25 pages are in this category, out of 25 total. ... Mean; Method of moments (probability theory)
For zero-mean random variables , …,, any mixed moment of the form () vanishes if is a partition of {, …,} which contains a singleton = {}. Hence, the expression of their joint cumulant in terms of mixed moments simplifies.
The nth moment about the mean (or nth central moment) of a real-valued random variable X is the quantity μ n := E[(X − E[X]) n], where E is the expectation operator.For a continuous univariate probability distribution with probability density function f(x), the nth moment about the mean μ is
The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().
Example: Given the mean and variance (as well as all further cumulants equal 0) the normal distribution is the distribution solving the moment problem.. In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure to the sequence of moments