Search results
Results from the WOW.Com Content Network
Second, they can form a water-in-oil emulsion, in which water is the dispersed phase and oil is the continuous phase. Multiple emulsions are also possible, including a "water-in-oil-in-water" emulsion and an "oil-in-water-in-oil" emulsion. [1] Emulsions, being liquids, do not exhibit a static internal structure.
A heated-water bath is not practical in most oil and gas separators, but heat can be added to the oil by direct or indirect fired heaters and/or heat exchangers, or heated free-water knockouts or emulsion treaters can be used to obtain a heated-water bath.
Downhole oil–water separation (DOWS) technology is an emerging technology that separates oil and gas from produced water at the bottom of the well, and re-injects most of the produced water into another formation which is usually deeper than the producing formation, while the oil and gas rich stream is pumped to the surface.
Demulsifiers, or emulsion breakers, are a class of specialty chemicals used to separate emulsions, for example, water in oil. They are commonly used in the processing of crude oil, which is typically produced along with significant quantities of saline water. This water (and salt) must be removed from the crude oil prior to refining.
Emulsified fuels are a type of emulsion that combines water with a combustible liquid, such as oil or fuel. An emulsion is a specialized form of dispersion that contains both a continuous phase and a dispersed phase. The most commonly utilized emulsified fuel is a water-in-diesel emulsion (also known as hydrodiesel). [1]
The API separator is a gravity separation device designed using Stokes' law principles that define the rise velocity of oil droplets based on their density, size and water properties. The design of the separator is based on the specific gravity difference between the oil and the wastewater because that difference is much smaller than the ...
Double or multiple emulsion classification is similar to single emulsion classification, except the immiscible phases are separated by at least two surfactant thin films. In a (W/O/W) combination, an immiscible oil phase exists between two separate water phases. In contrast, in an (O/W/O) combination the immiscible water phase separates two ...
Colloids are formed by phase separation, though not all phase separations forms colloids - for example oil and water can form separated layers under gravity rather than remaining as microscopic droplets in suspension. A common form of spontaneous phase separation is termed spinodal decomposition; it is described by the Cahn–Hilliard equation.