enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).

  3. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The eccentricity of Earth's orbit is currently about 0.016 7; its orbit is nearly circular. Neptune's and Venus's have even lower eccentricities of 0.008 6 and 0.006 8 respectively, the latter being the least orbital eccentricity of any planet in the Solar System.

  4. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Geosynchronous orbit (GSO): An orbit around the Earth with a period equal to one sidereal day, which is Earth's average rotational period of 23 hours, 56 minutes, 4.091 seconds. For a nearly circular orbit, this implies an altitude of approximately 35,786 kilometers (22,236 mi).

  5. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    The relative increase in solar irradiation at closest approach to the Sun compared to the irradiation at the furthest distance is slightly larger than four times the eccentricity. For Earth's current orbital eccentricity, incoming solar radiation varies by about 6.8%, while the distance from the Sun currently varies by only 3.4% (5.1 million km ...

  6. Position of the Sun - Wikipedia

    en.wikipedia.org/wiki/Position_of_the_Sun

    The number 2, in (N-2), is the approximate number of days after January 1 to the Earth's perihelion. The number 0.0167 is the current value of the eccentricity of the Earth's orbit. The eccentricity varies very slowly over time, but for dates fairly close to the present, it can be considered to be constant.

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...

  8. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    The X/Y plane coincides with Earth's equatorial plane, with the +X axis pointing toward the vernal equinox and the Y axis completing a right-handed set. The ECI reference frame is not truly inertial because of the slow, 26,000 year precession of Earth's axis , so the reference frames defined by Earth's orientation at a standard astronomical ...

  9. Orbital forcing - Wikipedia

    en.wikipedia.org/wiki/Orbital_forcing

    The reason is a minimum in the eccentricity of Earth's orbit around the Sun.” [6] Also, Archer and Ganopolski (2005) report that probable future CO 2 emissions may be enough to suppress the glacial cycle for the next 500 kyr. [7] Note in the graphic, the strong 100,000 year periodicity of the cycles, and the striking asymmetry of the curves ...