Search results
Results from the WOW.Com Content Network
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
It is helpful to associate changing electric currents with a build-up or decrease of magnetic field energy. The corresponding energy transfer requires or generates a voltage. A mechanical analogy in the K = 1 case with magnetic field energy (1/2)Li 2 is a body with mass M, velocity u and kinetic energy (1/2)Mu 2. The rate of change of velocity ...
In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
Induction of a Current on Itself. General Equations of Dynamics. Application of Dynamics to Electromagnetism. Electrokinetics. Exploration of the Field by means of the Secondary Circuit. General Equations. Dimensions of Electric Units. Energy and Stress. Current-Sheets. Parallel Currents. Circular Currents. Electromagnetic Instruments.
Mutual inductance occurs when the magnetic field of an inductor induces a magnetic field in an adjacent inductor. Mutual induction is the basis of transformer construction. = where M is the maximum mutual inductance possible between 2 inductors and L 1 and L 2 are the two inductors. In general
The current 3-form can be integrated over a 3-dimensional space-time region. The physical interpretation of this integral is the charge in that region if it is spacelike, or the amount of charge that flows through a surface in a certain amount of time if that region is a spacelike surface cross a timelike interval.