Search results
Results from the WOW.Com Content Network
In scientific research, the null hypothesis (often denoted H 0) [1] is the claim that the effect being studied does not exist. [note 1] The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data or variables being analyzed. If the null hypothesis is true, any experimentally observed ...
In statistical hypothesis testing, the analogous concepts are known as type I and type II errors, where a positive result corresponds to rejecting the null hypothesis, and a negative result corresponds to not rejecting the null hypothesis. The terms are often used interchangeably, but there are differences in detail and interpretation due to ...
On the basis that it is always assumed, by statistical convention, that the speculated hypothesis is wrong, and the so-called "null hypothesis" that the observed phenomena simply occur by chance (and that, as a consequence, the speculated agent has no effect) – the test will determine whether this hypothesis is right or wrong.
Region of rejection / Critical region: The set of values of the test statistic for which the null hypothesis is rejected. Power of a test (1 − β) Size: For simple hypotheses, this is the test's probability of incorrectly rejecting the null hypothesis. The false positive rate. For composite hypotheses this is the supremum of the probability ...
In statistical hypothesis testing, two hypotheses are compared. These are called the null hypothesis and the alternative hypothesis. The null hypothesis is the hypothesis that states that there is no relation between the phenomena whose relation is under investigation, or at least not of the form given by the alternative hypothesis.
(Fisher in The Design of Experiments) Many reasons for confusion exist including the use of double negative logic and terminology resulting from the merger of Fisher's "significance testing" (where the null hypothesis is never accepted) with "hypothesis testing" (where some hypothesis is always accepted).
Null distribution is a tool scientists often use when conducting experiments. The null distribution is the distribution of two sets of data under a null hypothesis. If the results of the two sets of data are not outside the parameters of the expected results, then the null hypothesis is said to be true. Null and alternative distribution
In statistical hypothesis testing, a null result occurs when an experimental result is not significantly different from what is to be expected under the null hypothesis; its probability (under the null hypothesis) does not exceed the significance level, i.e., the threshold set prior to testing for rejection of the null hypothesis.