enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plate theory - Wikipedia

    en.wikipedia.org/wiki/Plate_theory

    The shear strain, and hence the shear stress, across the thickness of the plate is not neglected in this theory. However, the shear strain is constant across the thickness of the plate. This cannot be accurate since the shear stress is known to be parabolic even for simple plate geometries.

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The region between these two points is named the boundary layer. For all Newtonian fluids in laminar flow, the shear stress is proportional to the strain rate in the fluid, where the viscosity is the constant of proportionality. For non-Newtonian fluids, the viscosity is not constant. The shear stress is imparted onto the boundary as a result ...

  4. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by ˙ =, where: ˙ is the shear rate, measured in reciprocal seconds;

  5. Reissner-Mindlin plate theory - Wikipedia

    en.wikipedia.org/wiki/Reissner-Mindlin_plate_theory

    The shear strain, and hence the shear stress, across the thickness of the plate is not neglected in this theory. However, the shear strain is constant across the thickness of the plate. This cannot be accurate since the shear stress is known to be parabolic even for simple plate geometries.

  6. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.

  7. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In that case, the shear stress on each cross-section is parallel to the cross-section, but oriented tangentially relative to the axis, and increases with distance from the axis. Significant shear stress occurs in the middle plate (the "web") of I-beams under bending loads, due to the web constraining the end plates ("flanges").

  8. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    This results in a constant bending moment between the two supports. Consequently, a shear-free zone is created, where the specimen is subjected only to bending. This has the advantage that no additional shear force acts on the specimen, unlike in the 3-point bending test. [6] The bending modulus for a flat specimen is calculated as follows:

  9. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    The Hertzian contact stress usually refers to the stress close to the area of contact between two spheres of different radii. It was not until nearly one hundred years later that Kenneth L. Johnson , Kevin Kendall , and Alan D. Roberts found a similar solution for the case of adhesive contact. [ 5 ]