Search results
Results from the WOW.Com Content Network
In chemistry, the term "turnover number" has two distinct meanings.. In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1]
On the other hand, the V max will decrease relative to an uninhibited enzyme. On a Lineweaver-Burk plot, the presence of a noncompetitive inhibitor is illustrated by a change in the y-intercept, defined as 1/V max. The x-intercept, defined as −1/K M, will remain the same. In competitive inhibition, the inhibitor will bind to an enzyme at the ...
Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.
When a non-competitive inhibitor is added the Vmax is changed, while the Km remains unchanged. According to the Lineweaver-Burk plot the Vmax is reduced during the addition of a non-competitive inhibitor, which is shown in the plot by a change in both the slope and y-intercept when a non-competitive inhibitor is added. [8]
Kinetically perfect enzymes have a specificity constant, k cat /K m, on the order of 10 8 to 10 9 M −1 s −1.The rate of the enzyme-catalysed reaction is limited by diffusion and so the enzyme 'processes' the substrate well before it encounters another molecule.
An example of a Lineweaver–Burk plot of 1/v against 1/a. In biochemistry, the Lineweaver–Burk plot (or double reciprocal plot) is a graphical representation of the Michaelis–Menten equation of enzyme kinetics, described by Hans Lineweaver and Dean Burk in 1934. [1]
This is accomplished by blocking the binding site of the substrate – the active site – by some means. The V max indicates the maximum velocity of the reaction, while the K m is the amount of substrate needed to reach half of the V max. K m also plays a part in indicating the tendency of the substrate to bind the enzyme. [2]
In the field of biochemistry, the specificity constant (also called kinetic efficiency or /), is a measure of how efficiently an enzyme converts substrates into products.A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity).