enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients; If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q; If the degree of p is less than the degree of q, the limit is 0.

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    1.4 Limits involving derivatives or infinitesimal changes. 1.5 Inequalities. 2 Polynomials and functions of the form x a. ... [4] if L is not equal to 0. = if n is ...

  4. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...

  5. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.

  6. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    For example, the quotient can be defined to equal zero; it can be defined to equal a new explicit point at infinity, sometimes denoted by the infinity symbol; or it can be defined to result in signed infinity, with positive or negative sign depending on the sign of the dividend. In these number systems division by zero is no longer a special ...

  7. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  8. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The interval [0, 1] has a natural hyperreal extension. Consider its partition into N subintervals of equal infinitesimal length 1/N, with partition points x i = i /N as i "runs" from 0 to N. The function ƒ is also naturally extended to a function ƒ* defined on the hyperreals between 0 and 1.

  9. Infinitesimal - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal

    His Archimedean property defines a number x as infinite if it satisfies the conditions | x | > 1, | x | > 1 + 1, | x | > 1 + 1 + 1,..., and infinitesimal if x ≠ 0 and a similar set of conditions holds for x and the reciprocals of the positive integers. A number system is said to be Archimedean if it contains no infinite or infinitesimal members.