Search results
Results from the WOW.Com Content Network
Halorhodopsin uses the energy of green/yellow light to move chloride ions into the cell, overcoming the membrane potential. Beside chlorides it transports other halides and nitrates into the cell. Potassium chloride uptake by cells helps to maintain osmotic balance during cell growth. By performing the same task, light-driven anion pumps can ...
Bacteriorhodopsin is a light-driven H + ion transporter found in some haloarchaea, most notably Halobacterium salinarum (formerly known as syn. H. halobium). The proton-motive force generated by the protein is used by ATP synthase to generate adenosine triphosphate (ATP). By expressing bacteriorhodopsin, the archaea cells are able to synthesise ...
An LED begins to emit light when more than 2 or 3 volts is applied in the forward direction. The reverse bias region uses a different vertical scale from the forward bias region to show that the leakage current is nearly constant with voltage until breakdown occurs. In forward bias, the current starts small but increases exponentially with voltage.
Though dual-LED packages exist that contain a different color LED in each direction, it is not expected that any single LED element can emit visible light when reverse-biased. [citation needed] It is not known if any zener diode could exist that emits light only in reverse-bias mode. Uniquely, this type of LED would conduct when connected ...
Cell–cell fusion is critical for the merging of gamete genomes and the development of organs in multicellular organisms. Cell-cell fusion occurs when both actin cytoskeleton and fusogenic proteins properly rearrange across the cell membrane. This process is led by actin-propelled membrane protrusions. [1]
Activation is the process of opening the activation gate, which occurs in response to the voltage inside the cell membrane (the membrane potential) becoming more positive with respect to the outside of the cell (depolarization), and 'deactivation' is the opposite process of the activation gate closing in response to the inside of the membrane ...
The cell cycle's goal is to precisely copy each organism's DNA and afterwards equally split the cell and its components between the two new cells. Four main stages occur in the eukaryotes. In G1, the cell is usually active and continues to grow rapidly, while in G2, the cell growth continues while protein molecules become ready for separation.
The open conformation of the ion channel allows for the translocation of ions across the cell membrane, while the closed conformation does not. Voltage-gated ion channels are a class of transmembrane proteins that form ion channels that are activated by changes in a cell's electrical membrane potential near the channel. The membrane potential ...