Search results
Results from the WOW.Com Content Network
Ideally the measuring device should not affect the circuit parameters i.e., the internal impedance of the ammeter should be zero (no voltage drop over the ammeter) and the internal impedance of the voltmeter should be infinite (no current through the voltmeter). However, in actual case, ammeters have a low but non zero impedance and voltmeters ...
Portable instruments, usually equipped to also measure current and resistance in the form of a multimeter are standard test instruments used in electrical and electronics work. Any measurement that can be converted to a voltage can be displayed on a meter that is suitably calibrated; for example, pressure, temperature, flow or level in a ...
Inexpensive analog meters may have only a single resistance scale, seriously restricting the range of precise measurements. Typically, an analog meter will have a panel adjustment to set the zero-ohms calibration of the meter, to compensate for the varying voltage of the meter battery, and the resistance of the meter's test leads.
High-precision laboratory measurements of electrical quantities are used in experiments to determine fundamental physical properties such as the charge of the electron or the speed of light, and in the definition of the units for electrical measurements, with precision in some cases on the order of a few parts per million. Less precise ...
A voltmeter is optional since the applied voltage is the same as the voltmeter reading. Now with the help of a variac, the applied voltage is slowly increased until the ammeter gives a reading equal to the rated current of the HV side. After reaching the rated current of the HV side, all three instruments reading (Voltmeter, Ammeter, and ...
Then the electric field and current density are constant and parallel, and by the general definition of resistivity, we obtain =, Since the electric field is constant, it is given by the total voltage V across the conductor divided by the length ℓ of the conductor: =.
The electrical resistance of a uniform conductor is given in terms of resistivity by: [40] = where ℓ is the length of the conductor in SI units of meters, a is the cross-sectional area (for a round wire a = πr 2 if r is radius) in units of meters squared, and ρ is the resistivity in units of ohm·meters.
An ohmmeter is an electrical instrument that measures electrical resistance (the opposition offered by a circuit or component to the flow of electric current). Multimeters also function as ohmmeters when in resistance-measuring mode. An ohmmeter applies current to the circuit or component whose resistance is to be measured.