Search results
Results from the WOW.Com Content Network
Given some experimental measurements of a system and some computer simulation results from its mathematical model, inverse uncertainty quantification estimates the discrepancy between the experiment and the mathematical model (which is called bias correction), and estimates the values of unknown parameters in the model if there are any (which ...
Uncertainty or incertitude refers to situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. [1]
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Figure 1. Schematic representation of uncertainty analysis and sensitivity analysis. In mathematical modeling, uncertainty arises from a variety of sources - errors in input data, parameter estimation and approximation procedure, underlying hypothesis, choice of model, alternative model structures and so on.
that is, find (z − E[z] ) and do the necessary algebra to collect terms and simplify. 7. For most purposes, it is sufficient to keep only the first-order terms; square that quantity. 8. Find the expected value of that result. This will be the approximation for the variance of z.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
If the perturbation required is small, on the order of the uncertainty in the input data, then the results are in some sense as accurate as the data "deserves". The algorithm is then defined as backward stable .