Search results
Results from the WOW.Com Content Network
The "machinery" is similar to that in mitochondria except that light energy is used to pump protons across a membrane to produce a proton-motive force. ATP synthase then ensues exactly as in oxidative phosphorylation. [28] Some of the ATP produced in the chloroplasts is consumed in the Calvin cycle, which produces triose sugars.
A hydrogen carrier is an organic macromolecule that transports atoms of hydrogen from one place to another inside a cell or from cell to cell for use in various metabolical processes. [1] Examples include NADPH , NADH , and FADH .
The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, producing large amounts of energy (ATP). Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions.
Energy carriers are produced by the energy sector using primary energy sources. In the field of energetics, an energy carrier is produced by human technology from a primary energy source. Only the energy sector uses primary energy sources. Other sectors of society use an energy carrier to perform useful activities (end-uses). [3]
The energy levels of hydrogen can be calculated fairly accurately using the Bohr model of the atom, in which the electron "orbits" the proton, like how Earth orbits the Sun. However, the electron and proton are held together by electrostatic attraction, while planets and celestial objects are held by gravity .
This reflux releases free energy produced during the generation of the oxidized forms of the electron carriers (NAD + and Q) with energy provided by O 2. The free energy is used to drive ATP synthesis, catalyzed by the F 1 component of the complex. [13] Coupling with oxidative phosphorylation is a key step for ATP production.
Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...
Since energy is released when ATP is broken down, energy is required to rebuild or resynthesize it. The building blocks of ATP synthesis are the by-products of its breakdown; adenosine diphosphate (ADP) and inorganic phosphate (P i). The energy for ATP resynthesis comes from three different series of chemical reactions that take place within ...