Search results
Results from the WOW.Com Content Network
1-nitropropane is produced industrially by the reaction of propane and nitric acid. This reaction forms four nitroalkanes: nitromethane, nitroethane, 1-nitropropane, and 2-nitropropane. 1-nitropropane is also a byproduct of the process for making 2-nitropropane, which is done by vapour phase nitration of propane.
Experiments and Observations on Different Kinds of Air (1774–86) is a six-volume work published by 18th-century British polymath Joseph Priestley which reports a series of his experiments on "airs" or gases, most notably his discovery of the oxygen gas (which he called "dephlogisticated air"). [1]
For complex systems, such as electrolytic solutions, and other drivers, such as a pressure gradient, the equation must be expanded to include additional terms for interactions. A major disadvantage of the Maxwell–Stefan theory is that the diffusion coefficients , with the exception of the diffusion of dilute gases, do not correspond to the ...
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
In the so-called Ter Meer reaction (1876) named after Edmund ter Meer, [14] the reactant is a 1,1-halonitroalkane: The reaction mechanism is proposed in which in the first slow step a proton is abstracted from nitroalkane 1 to a carbanion 2 followed by protonation to an aci-nitro 3 and finally nucleophilic displacement of chlorine based on an ...
Grignard reagents react with 1,4-dioxane to give the diorganomagnesium compounds and insoluble coordination polymer MgX 2 (dioxane) 2 and (R = organic group, X = halide): 2 RMgX + dioxane ⇌ R 2 Mg + MgX 2 (dioxane) 2. This reaction exploits the Schlenk equilibrium, driving it toward the right.
These three gas laws in combination with Avogadro's law can be generalized by the ideal gas law. Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of ...
Nitropropane may refer to: 1-Nitropropane; 2-Nitropropane This page was last edited on 16 May 2022, at 02:06 (UTC). Text is available under the Creative Commons ...