Search results
Results from the WOW.Com Content Network
With the new operations, the implementation of AVL trees can be more efficient and highly-parallelizable. [13] The function Join on two AVL trees t 1 and t 2 and a key k will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2.
The hash function in Java, used by HashMap and HashSet, is provided by the Object.hashCode() method. Since every class in Java inherits from Object, every object has a hash function. A class can override the default implementation of hashCode() to provide a custom hash function more in accordance with the properties of the object.
In computer science, a Judy array is a data structure implementing a type of associative array with high performance and low memory usage. [1] Unlike most other key-value stores, Judy arrays use no hashing, leverage compression on their keys (which may be integers or strings), and can efficiently represent sparse data; that is, they may have large ranges of unassigned indices without greatly ...
Under this framework, the join operation captures all balancing criteria of different balancing schemes, and all other functions join have generic implementation across different balancing schemes. The join-based algorithms can be applied to at least four balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps.
CGAL : Computational Geometry Algorithms Library in C++ contains a robust implementation of Range Trees; Boost.Icl offers C++ implementations of interval sets and maps. IntervalTree (Python) - a centered interval tree with AVL balancing, compatible with tagged intervals; Interval Tree (C#) - an augmented interval tree, with AVL balancing
However, hash tables have a much better average-case time complexity than self-balancing binary search trees of O(1), and their worst-case performance is highly unlikely when a good hash function is used. A self-balancing binary search tree can be used to implement the buckets for a hash table that uses separate chaining.
AA tree; AVL tree; Binary search tree; Binary tree; Cartesian tree; Conc-tree list; Left-child right-sibling binary tree; Order statistic tree; Pagoda; Randomized binary search tree; Red–black tree; Rope; Scapegoat tree; Self-balancing binary search tree; Splay tree; T-tree; Tango tree; Threaded binary tree; Top tree; Treap; WAVL tree; Weight ...
For comparison, an AVL tree is guaranteed to be within a factor of 1.44 of the optimal height while requiring only two additional bits of storage in a naive implementation. [1] Therefore, most self-balancing BST algorithms keep the height within a constant factor of this lower bound.