Search results
Results from the WOW.Com Content Network
Laser metal deposition (LMD) is an additive manufacturing process in which a feedstock material (typically a powder) is melted with a laser and then deposited onto a substrate. [1] A variety of pure metals and alloys can be used as the feedstock, as well as composite materials such as metal matrix composites.
A plume ejected from a SrRuO 3 target during pulsed laser deposition. One possible configuration of a PLD deposition chamber. Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited.
The laser beam typically travels through the center of the deposition head and is focused to a small spot by one or more lenses. The build occurs on an X-Y table which is driven by a tool path created from a digital model to fabricate an object layer by layer. The deposition head is moved up vertically as each layer is completed.
Scanning prism. 5 Laser unit. 6 Layers. 7 Moving platform. 8 Waste. Laminated object manufacturing ( LOM ) is a rapid prototyping system developed by Helisys Inc. (Cubic Technologies is now the successor organization of Helisys) In it, layers of adhesive-coated paper , plastic , or metal laminates are successively glued together and cut to ...
Laser cladding [3] [4] is a method of depositing material by which a powdered or wire feedstock material is melted and consolidated by use of a laser in order to coat part of a substrate or fabricate a near-net shape part (additive manufacturing technology).
Laser Rapid Manufacturing (LRM) is one of the advanced additive manufacturing processes that is capable of fabricating engineering components directly from a solid model. Technique [ edit ]
The powder feedstock is typically pre-alloyed, as opposed to a mixture. That aspect allows classification of EBM with selective laser melting (SLM), where competing technologies like SLS and DMLS require thermal treatment after fabrication. Compared to SLM and DMLS, EBM has a generally superior build rate because of its higher energy density ...
Thermal laser epitaxy (TLE) is a physical vapor deposition technique that utilizes irradiation from continuous-wave lasers to heat sources locally for growing films on a substrate. [ 1 ] [ 2 ] This technique can be performed under ultra-high vacuum pressure or in the presence of a background atmosphere, such as ozone , to deposit oxide films.