Search results
Results from the WOW.Com Content Network
At this instant, the velocity vectors of the other points in the body generate a circular field around this center of rotation which is identical to what is generated by a pure rotation. Planar movement of a body is often described using a plane figure moving in a two-dimensional plane. The instant center is the point in the moving plane around ...
Points are at 0.05 s intervals and length of their tails is linearly proportional to their speed. t = time from launch, T = time of flight, R = range and H = highest point of trajectory (indicated with arrows). The range, R, is the greatest distance the object travels along the x-axis in the I sector.
As the car approaches a loop, the direction of a passenger's inertial velocity points straight ahead at the same angle as the track leading up to the loop. As the car enters the loop, the track guides the car up, moving the passenger up as well. This change in direction creates a feeling of extra gravity as the passenger is pushed down into the ...
Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangential to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
Consider a moving rigid body and the velocity of a point P on the body being a function of the position and velocity of a center-point C and the angular velocity .. The linear velocity vector at P is expressed in terms of the velocity vector at C as:
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.
so the flow velocity components in relation to the stream function must be =, =. Notice that the stream function is linear in the velocity. Consequently if two incompressible flow fields are superimposed, then the stream function of the resultant flow field is the algebraic sum of the stream functions of the two original fields.