Search results
Results from the WOW.Com Content Network
Here () denotes the sum of the base-digits of , and the exponent given by this formula can also be interpreted in advanced mathematics as the p-adic valuation of the factorial. [54] Applying Legendre's formula to the product formula for binomial coefficients produces Kummer's theorem , a similar result on the exponent of each prime in the ...
The exponential factorials grow much more quickly than regular factorials or even hyperfactorials. The number of digits in the exponential factorial of 6 is approximately 5 × 10 183 230 . The sum of the reciprocals of the exponential factorials from 1 onwards is the following transcendental number :
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .
The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)! (its place value).
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Graham, Knuth, and Patashnik [11] (pp 47, 48) propose to pronounce these expressions as "to the rising" and "to the falling", respectively. An alternative notation for the rising factorial () is the less common () +.
Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.