Search results
Results from the WOW.Com Content Network
Figure 9 is the phase plot. Using the value of f 0 dB = 1 kHz found above from the magnitude plot of Figure 8, the open-loop phase at f 0 dB is −135°, which is a phase margin of 45° above −180°. Using Figure 9, for a phase of −180° the value of f 180 = 3.332 kHz (the same result as found earlier, of course [note 3]).
Phasor notation (also known as angle notation) is a mathematical notation used in electronics engineering and electrical engineering.A vector whose polar coordinates are magnitude and angle is written . [13] can represent either the vector (, ) or the complex number + =, according to Euler's formula with =, both of which have magnitudes of 1.
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
For any complex number written in polar form (such as r e iθ), the phase factor is the complex exponential (e iθ), where the variable θ is the phase of a wave or other periodic function. The phase factor is a unit complex number, i.e. a complex number of absolute value 1. It is commonly used in quantum mechanics and optics.
The magnitude of a complex number is the length of a straight line drawn from the origin to the point representing it. The Smith chart uses the same convention, noting that, in the normalised impedance plane, the positive x -axis extends from the center of the Smith chart at z T = 1 ± j 0 {\displaystyle \,z_{\mathsf {T}}=1\pm j0\,} to the ...
A complex valued frequency-domain representation consists of both the magnitude and the phase of a set of sinusoids (or other basis waveforms) at the frequency components of the signal. Although it is common to refer to the magnitude portion (the real valued frequency-domain) as the frequency response of a signal, the phase portion is required ...
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.