Search results
Results from the WOW.Com Content Network
Vertex/Face configuration exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex) Tetrahedron {3,3} (3.3.3) arccos ( 1 / 3 ) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = π / 2 90° Octahedron {3,4} (3.3.3.3) arccos (- 1 / 3 ) 109.471 ...
In pyritohedral pyrite, the faces have a Miller index of (210), which means that the dihedral angle is 2·arctan(2) ≈ 126.87° and each pentagonal face has one angle of approximately 121.6° in between two angles of approximately 106.6° and opposite two angles of approximately 102.6°. The following formulas show the measurements for the ...
This dihedral angle, also called the face angle, is measured as the internal angle with respect to the polyhedron. An angle of 0° means the face normal vectors are antiparallel and the faces overlap each other, which implies that it is part of a degenerate polyhedron. An angle of 180° means the faces are parallel, as in a tiling. An angle ...
A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron ...
The Schläfli symbol of a regular polyhedron is {p,q} if its faces are p-gons, and each vertex is surrounded by q faces (the vertex figure is a q-gon). For example, {5,3} is the regular dodecahedron. It has pentagonal (5 edges) faces, and 3 pentagons around each vertex. See the 5 convex Platonic solids, the 4 nonconvex Kepler-Poinsot polyhedra.
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices, and 120 edges.
The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24-cell's octahedral cells. The remaining 12 octahedral cells project onto the faces of the rhombic dodecahedron.
A variant with pyritohedral symmetry is called a dyakis dodecahedron [5] [6] or diploid. [7] It is common in crystallography. A dyakis dodecahedron can be created by enlarging 24 of the 48 faces of a disdyakis dodecahedron. A tetartoid can be created by enlarging 12 of the 24 faces of a dyakis dodecahedron. 3D model of a dyakis dodecahedron [8]