Search results
Results from the WOW.Com Content Network
A Taylor series analysis of the upwind scheme discussed above will show that it is first-order accurate in space and time. Modified wavenumber analysis shows that the first-order upwind scheme introduces severe numerical diffusion /dissipation in the solution where large gradients exist due to necessity of high wavenumbers to represent sharp ...
Let (,) and (,) be ordered pairs. Then the characteristic (or defining) property of the ordered pair is: (,) = (,) = =.. The set of all ordered pairs whose first entry is in some set A and whose second entry is in some set B is called the Cartesian product of A and B, and written A × B.
Following the classical finite volume method framework, we seek to track a finite set of discrete unknowns, = / + / (,) where the / = + (/) and = form a discrete set of points for the hyperbolic problem: + (()) =, where the indices and indicate the derivatives in time and space, respectively.
Unlike first-order upwind scheme, the MacCormack does not introduce diffusive errors in the solution. However, it is known to introduce dispersive errors ( Gibbs phenomenon ) in the region where the gradient is high.
Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.
That is, A × B is the set of all ordered pairs whose first coordinate is an element of A and whose second coordinate is an element of B. This definition may be extended to a set A × B × C of ordered triples, and more generally to sets of ordered n-tuples for any positive integer n.
Ordered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine , Euclidean , absolute , and hyperbolic geometry (but not for projective geometry).
A geometry: it is equipped with a metric and is flat. A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field.