enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x ...

  3. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    The inverse is "If a polygon is not a quadrilateral, then it does not have four sides." In this case, unlike the last example, the inverse of the statement is true. The converse is "If a polygon has four sides, then it is a quadrilateral." Again, in this case, unlike the last example, the converse of the statement is true.

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    Throughout this article, capital letters (such as ,,,,, and ) will denote sets.On the left hand side of an identity, typically, will be the leftmost set, will be the middle set, and

  5. Transitive closure - Wikipedia

    en.wikipedia.org/wiki/Transitive_closure

    The transitive closure of this relation is a different relation, namely "there is a sequence of direct flights that begins at city x and ends at city y". Every relation can be extended in a similar way to a transitive relation. An example of a non-transitive relation with a less meaningful transitive closure is "x is the day of the week after y".

  6. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.

  7. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    That the function g is injective implies that given some equality of the form a ∗ x = b, where the only unknown is x, there is only one possible value of x satisfying the equality. More precisely, we are able to define some function f, the inverse of g, such that for all x f(g(x)) = f(a ∗ x) = x.

  8. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  9. Group action - Wikipedia

    en.wikipedia.org/wiki/Group_action

    The action of G on X is called transitive if for any two points x, y ∈ X there exists a g ∈ G so that g ⋅ x = y. The action is simply transitive (or sharply transitive, or regular) if it is both transitive and free. This means that given x, y ∈ X the element g in the definition of transitivity is unique. If X is acted upon simply ...