Search results
Results from the WOW.Com Content Network
When a regular dodecahedron is inscribed in a sphere, it occupies more of the sphere's volume (66.49%) than an icosahedron inscribed in the same sphere (60.55%). [10] The resulting of both spheres' volumes initially began from the problem by ancient Greeks, determining which of two shapes has a larger volume: an icosahedron inscribed in a ...
The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...
The icosahedron has the largest number of faces and the largest dihedral angle, it hugs its inscribed sphere the most tightly, and its surface area to volume ratio is closest to that of a sphere of the same size (i.e. either the same surface area or the same volume). The dodecahedron, on the other hand, has the smallest angular defect, the ...
It has 8 vertices adjusted in or out in alternate sets of 4, with the limiting case a tetrahedral envelope. Variations can be parametrized by (a,b), where b and a depend on each other such that the tetrahedron defined by the four vertices of a face has volume zero, i.e. is a planar face. (1,1) is the rhombic solution.
In the mathematical field of graph theory, a rhombicosidodecahedral graph is the graph of vertices and edges of the rhombicosidodecahedron, one of the Archimedean solids. It has 60 vertices and 120 edges, and is a quartic graph Archimedean graph. [5] Square centered Schlegel diagram
Since the 120-cell is the dual of the 600-cell, it can be constructed from the 600-cell by placing its 600 vertices at the center of volume of each of the 600 tetrahedral cells. From a 600-cell of unit long radius, this results in a 120-cell of slightly smaller long radius ( φ 2 / √ 8 ≈ 0.926) and edge
Dodecahedrane is a chemical compound, a hydrocarbon with formula C 20 H 20, whose carbon atoms are arranged as the vertices (corners) of a regular dodecahedron. Each carbon is bound to three neighbouring carbon atoms and to a hydrogen atom. This compound is one of the three possible Platonic hydrocarbons, the other two being cubane and ...
The dodecahedron-first orthographic projection of the dodecahedral prism into 3D space has a dodecahedral envelope. The two dodecahedral cells project onto the entire volume of this envelope, while the 12 pentagonal prism cells project onto its 12 pentagonal faces.