Search results
Results from the WOW.Com Content Network
The stability of fixed points of a system of constant coefficient linear differential equations of first order can be analyzed using the eigenvalues of the corresponding matrix. An autonomous system ′ =, where x(t) ∈ R n and A is an n×n matrix with real entries, has a constant solution =
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.
An algorithm for solving a linear evolutionary partial differential equation is stable if the total variation of the numerical solution at a fixed time remains bounded as the step size goes to zero. The Lax equivalence theorem states that an algorithm converges if it is consistent and stable (in this sense).
Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.
The region of absolute stability for the backward Euler method is the complement in the complex plane of the disk with radius 1 centered at 1, depicted in the figure. [4] This includes the whole left half of the complex plane, making it suitable for the solution of stiff equations. [5] In fact, the backward Euler method is even L-stable.
In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C 1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods
For r < 1, exists outside [0, 1] as an unstable fixed point, but for r = 1, the two fixed points collide, and for r > 1, appears between [0, 1] as a stable fixed point. When the parameter r = 1, the trajectory of the logistic map converges to 0 as before, but the convergence speed is slower at r = 1.