enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    The fixed point a is stable if the absolute value of the derivative of f at a is strictly less than 1, and unstable if it is strictly greater than 1. This is because near the point a, the function f has a linear approximation with slope f'(a):

  3. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.

  4. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.

  5. Equilibrium point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_point...

    Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points. In mathematics , specifically in differential equations , an equilibrium point is a constant solution to a differential equation.

  6. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    An algorithm for solving a linear evolutionary partial differential equation is stable if the total variation of the numerical solution at a fixed time remains bounded as the step size goes to zero. The Lax equivalence theorem states that an algorithm converges if it is consistent and stable (in this sense).

  7. Fixed-point computation - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_computation

    Fixed-point computation refers to the process of computing an exact or approximate fixed point of a given function. [1] In its most common form, the given function f {\displaystyle f} satisfies the condition to the Brouwer fixed-point theorem : that is, f {\displaystyle f} is continuous and maps the unit d -cube to itself.

  8. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    The region of absolute stability for the backward Euler method is the complement in the complex plane of the disk with radius 1 centered at 1, depicted in the figure. [4] This includes the whole left half of the complex plane, making it suitable for the solution of stiff equations. [5] In fact, the backward Euler method is even L-stable.

  9. Tent map - Wikipedia

    en.wikipedia.org/wiki/Tent_map

    If μ is greater than 1 the system has two fixed points, one at 0, and the other at μ/(μ + 1). Both fixed points are unstable, i.e. a value of x close to either fixed point will move away from it, rather than towards it. For example, when μ is 1.5 there is a fixed point at x = 0.6 (since 1.5(1 − 0.6) = 0.6) but starting at x = 0.61 we get