Search results
Results from the WOW.Com Content Network
Sewers are often constructed as circular pipes. It has long been accepted that the value of n varies with the flow depth in partially filled circular pipes. [9] A complete set of explicit equations that can be used to calculate the depth of flow and other unknown variables when applying the Manning equation to circular pipes is available. [10]
Note that for the case of a circular pipe, D H = 4 π R 2 2 π R = 2 R {\displaystyle D_{\text{H}}={\frac {4\pi R^{2}}{2\pi R}}=2R} The need for the hydraulic diameter arises due to the use of a single dimension in the case of a dimensionless quantity such as the Reynolds number , which prefers a single variable for flow analysis rather than ...
, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m); v {\displaystyle \langle v\rangle } , the mean flow velocity , experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);
Kirchhoff equations – Motion of rigid body in ideal fluid; Knudsen equation – Description of gas flow in free molecular flow; Manning equation – Estimate of velocity in open channel flows; Mild-slope equation – Physics phenomenon and formula
is the roughness of the inner surface of the pipe (dimension of length) D is inner pipe diameter; The Swamee–Jain equation is used to solve directly for the Darcy–Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation. [10]
The Chézy Formula is a semi-empirical resistance equation [1] [2] which estimates mean flow velocity in open channel conduits. [3] The relationship was conceptualized and developed in 1768 by French physicist and engineer Antoine de Chézy (1718–1798) while designing Paris's water canal system.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Haaland equation was proposed in 1983 by Professor S.E. Haaland of the Norwegian Institute of Technology. [9] It is used to solve directly for the Darcy–Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation, but the discrepancy from experimental data is well within ...