enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.

  3. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column. The formula is based on experimental results by J. B. Johnson from around 1900 as an alternative to Euler's critical load formula under low slenderness ratio (the ratio of radius of gyration to ...

  4. Perry–Robertson formula - Wikipedia

    en.wikipedia.org/wiki/Perry–Robertson_formula

    The Perry–Robertson formula is a mathematical formula which is able to produce a good approximation of buckling loads in long slender columns or struts, and is the basis for the buckling formulation adopted in EN 1993. The formula in question can be expressed in the following form:

  5. Buckling - Wikipedia

    en.wikipedia.org/wiki/Buckling

    This results in a non-linear behaviour in the load carrying behaviour of these details. The ratio of the actual load to the load at which buckling occurs is known as the buckling ratio of a sheet. [1] High buckling ratios may lead to excessive wrinkling of the sheets which may then fail through yielding of the wrinkles. Although they may buckle ...

  6. Southwell plot - Wikipedia

    en.wikipedia.org/wiki/Southwell_plot

    Southwell Plot constructed from a straight line fitted to experimental data points. The Southwell plot is a graphical method of determining experimentally a structure's critical load, without needing to subject the structure to near-critical loads. [1]

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    When a part is subjected to a cyclic stress, also known as stress range (Sr), it has been observed that the failure of the part occurs after a number of stress reversals (N) even if the magnitude of the stress range is below the material's yield strength. Generally, higher the range stress, the fewer the number of reversals needed for failure.

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]

  9. Mark–Houwink equation - Wikipedia

    en.wikipedia.org/wiki/Mark–Houwink_equation

    The Mark–Houwink equation, also known as the Mark–Houwink–Sakurada equation or the Kuhn–Mark–Houwink–Sakurada equation or the Landau–Kuhn–Mark–Houwink–Sakurada equation or the Mark-Chrystian equation gives a relation between intrinsic viscosity [] and molecular weight: [1] [2]