Search results
Results from the WOW.Com Content Network
The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source. The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2]
The last two digits indicate the color temperature of the lamp in kelvins (K). For example, if the last two digits on a lamp say 41, that lamp's color temperature will be 4100 K, which is a common tri-phosphor cool white fluorescent lamp. BL is used for ultraviolet lamps commonly used in bug zappers.
The Kelvin color temperature scale ranges from 1000K (amber) to 3000K (yellow) to 5500K (white) to 8000K (blue) to 12000K (purple). HID Lamp Color Temperature Range. HID lamps produce different colors of light primarily through the use of various metal additives in the lamp's arc tube and the physics of the gas discharge process. [11]
This is by design; the XYZ color matching functions are normalized such that their integrals over the visible spectrum are the same. [1] Illuminant E is not a black body, so it does not have a color temperature, but it can be approximated by a D series illuminant with a CCT of 5455 K. (Of the canonical illuminants, D 55 is the closest.)
The color temperature of a white light source is the temperature in kelvins of a theoretical black body emitter that most closely matches the spectral characteristics (spectral power distribution) of the lamp. An incandescent bulb has a color temperature around 2800 to 3000 kelvins; daylight is around 6400 kelvins.
[3] [4] [5] In practice, light sources that approximate Planckian radiators, such as certain fluorescent or high-intensity discharge lamps, are assessed based on their CCT, which is the temperature of a Planckian radiator whose color most closely resembles that of the light source. For light sources that do not follow the Planckian distribution ...
Researchers use daylight as the benchmark to which to compare color rendering of electric lights. In 1948, daylight was described as the ideal source of illumination for good color rendering because "it (daylight) displays (1) a great variety of colors, (2) makes it easy to distinguish slight shades of color, and (3) the colors of objects around us obviously look natural".
Lighting control systems serve to provide the right amount of light where and when it is needed. [1] Lighting control systems are employed to maximize the energy savings from the lighting system, satisfy building codes, or comply with green building and energy conservation programs. Lighting control systems may include a lighting technology ...