Search results
Results from the WOW.Com Content Network
In the A/T site, the A-site half resides in the small ribosomal subunit where the mRNA decoding site is located. The mRNA decoding site is where the mRNA codon is read out during translation. The T-site half resides mainly on the large ribosomal subunit where EF-Tu or eEF-1 interacts with the ribosome.
In vivo experiments show that the N-terminal sequences are used as transit peptides for import into the mitochondria and plastids. Comparison studies using available tRNA nucleotidyltransferase sequences have identified a single gene coding for this enzyme in plants.
Mutagenesis experiments have shown that the flexibility of the peptide that links the α-ACB and S4-like domains is responsible for the disorder of the latter in the structure and that elements of sequence in this linker peptide are essential for the binding of tRNA(Tyr) by YARS and its aminoacylation with tyrosine. [11]
The synthetase first binds ATP and the corresponding amino acid (or its precursor) to form an aminoacyl-adenylate, releasing inorganic pyrophosphate (PPi).The adenylate-aaRS complex then binds the appropriate tRNA molecule's D arm, and the amino acid is transferred from the aa-AMP to either the 2'- or the 3'-OH of the last tRNA nucleotide (A76) at the 3'-end.
An aminoacyl-tRNA, with the tRNA above the arrow and a generic amino acid below the arrow. Most of the tRNA structure is shown as a simplified, colorful ball-and-stick model; the terminal adenosine and the amino acid are shown as structural formulas.
The T-arm has two components to it; the T-stem and the T-loop. The T-stem consists of a series of paired nucleotides, typically 5 pairs, but sometimes as few as 1 or as many as 6. [1] [2] The T-loop is also often known as the TΨC arm due to the presence of ribothymidine (T/m5U), pseudouridine and cytidine residues. It folds into a unique ...
Picture of an SDS-PAGE. The molecular markers (ladder) are in the left lane. Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility.
The presence of this functional group causes the helix to mostly take the A-form geometry, [11] although in single strand dinucleotide contexts, RNA can rarely also adopt the B-form most commonly observed in DNA. [12] The A-form geometry results in a very deep and narrow major groove and a shallow and wide minor groove. [13]