enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem , in which the input is restricted to be a bipartite graph , and the matching constrained to be have cardinality that of the ...

  3. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    A graph is bipartite if its vertices can be colored with two different colors such that each edge has one endpoint of each color. A graph is cubic (or 3-regular) if each vertex is the endpoint of exactly three edges. Finally, a graph is Hamiltonian if there exists a cycle that passes through each of its vertices exactly once. Barnette's ...

  4. Category:Unsolved problems in graph theory - Wikipedia

    en.wikipedia.org/wiki/Category:Unsolved_problems...

    Pages in category "Unsolved problems in graph theory" The following 32 pages are in this category, out of 32 total. This list may not reflect recent changes. A.

  5. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  6. Complete coloring - Wikipedia

    en.wikipedia.org/wiki/Complete_coloring

    Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.

  7. Minimum cut - Wikipedia

    en.wikipedia.org/wiki/Minimum_cut

    The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.

  8. Graph sandwich problem - Wikipedia

    en.wikipedia.org/wiki/Graph_sandwich_problem

    The graph sandwich problem is NP-complete when Π is the property of being a chordal graph, comparability graph, permutation graph, chordal bipartite graph, or chain graph. [2] [4] It can be solved in polynomial time for split graphs, [2] [5] threshold graphs, [2] [5] and graphs in which every five vertices contain at most one four-vertex ...

  9. Petersen family - Wikipedia

    en.wikipedia.org/wiki/Petersen_family

    K 6 is at the top of the illustration, K 3,3,1 is in the upper right, and the Petersen graph is at the bottom. The blue links indicate ΔY- or YΔ-transforms between graphs in the family. In graph theory, the Petersen family is a set of seven undirected graphs that includes the Petersen graph and the complete graph K 6.