Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
A Taylor series of f about point a may diverge, converge at only the point a, converge for all x such that | | < (the largest such R for which convergence is guaranteed is called the radius of convergence), or converge on the entire real line. Even a converging Taylor series may converge to a value different from the value of the function at ...
Since the function cosh x is even, only even exponents for x occur in its Taylor series. The sum of the sinh and cosh series is the infinite series expression of the exponential function. The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function.
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]