Search results
Results from the WOW.Com Content Network
For a non-holonomic process function, no such function may be defined. In other words, for a holonomic process function, λ may be defined such that dY = λδX is an exact differential. For example, thermodynamic work is a holonomic process function since the integrating factor λ = 1 / p (where p is pressure) will yield exact ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Q 10 is a unitless quantity, as it is the factor by which a rate changes, and is a useful way to express the temperature dependence of a process. For most biological systems, the Q 10 value is ~ 2 to 3.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (or DDQ) is the chemical reagent with formula C 6 Cl 2 (CN) 2 O 2. This oxidant is useful for the dehydrogenation of alcohols, [3] phenols, [4] and steroid ketones. [5] DDQ decomposes in water, but is stable in aqueous mineral acid. [6]
In the Halcon process, molybdenum-based catalysts are used for this reaction: (CH 3) 3 COOH + CH 2 =CHCH 3 → (CH 3) 3 COH + CH 2 OCHCH 3. The byproduct t-butanol can be dehydrated to isobutene and converted to MTBE. On a much smaller scale, tert-butyl hydroperoxide is used to produce some fine chemicals by the Sharpless epoxidation. [4]
The thermodynamic space has k+2 dimensions; The differential quantities (U, S, V, N i) are all extensive quantities. The coefficients of the differential quantities are intensive quantities (temperature, pressure, chemical potential). Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive ...
In practice, is set to 0.2, 0.3 or 0.48. The latter value is frequently used for aqueous systems. The high value reflects the ordered structure caused by hydrogen bonds. However, in the description of liquid-liquid equilibria, the non-randomness parameter is set to 0.2 to avoid wrong liquid-liquid description.