Search results
Results from the WOW.Com Content Network
An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
If a relation is transitive then its transitive extension is itself, that is, if R is a transitive relation then R 1 = R. The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R ...
A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order A relation that is reflexive, antisymmetric, and transitive. Strict partial order A relation that is irreflexive, asymmetric, and transitive. Total order
A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain is also the underlying set for an algebraic structure, and which respects the additional structure.
A reflexive, weak, [1] or non-strict partial order, [2] commonly referred to simply as a partial order, is a homogeneous relation ≤ on a set that is reflexive, antisymmetric, and transitive. That is, for all a , b , c ∈ P , {\displaystyle a,b,c\in P,} it must satisfy:
The converse is not true: most directed graphs are neither reflexive nor transitive. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.
An equivalence relation is a relation that is reflexive, symmetric, and transitive, like equality expressed through the symbol "=". [74] A strict partial order is a relation that is irreflexive, anti-symmetric, and transitive, like the relation being less than expressed through the symbol "<". [75]
A relation is transitive if it is closed under this operation, and the transitive closure of a relation is its closure under this operation. A preorder is a relation that is reflective and transitive. It follows that the reflexive transitive closure of a relation is the smallest preorder containing it