enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  3. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    For a sample of n values, a method of moments estimator of the population excess kurtosis can be defined as = = = (¯) [= (¯)] where m 4 is the fourth sample moment about the mean, m 2 is the second sample moment about the mean (that is, the sample variance), x i is the i th value, and ¯ is the sample mean.

  4. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated.This can be thought of as a generalisation of many classical methods—the method of moments, least squares, and maximum likelihood—as well as some recent methods like M-estimators.

  5. Method of simulated moments - Wikipedia

    en.wikipedia.org/wiki/Method_of_simulated_moments

    In econometrics, the method of simulated moments (MSM) (also called simulated method of moments [1]) is a structural estimation technique introduced by Daniel McFadden. [2] It extends the generalized method of moments to cases where theoretical moment functions cannot be evaluated directly, such as when moment functions involve high-dimensional integrals.

  6. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  7. Moment-generating function - Wikipedia

    en.wikipedia.org/wiki/Moment-generating_function

    As its name implies, the moment-generating function can be used to compute a distribution’s moments: the nth moment about 0 is the nth derivative of the moment-generating function, evaluated at 0. In addition to real-valued distributions (univariate distributions), moment-generating functions can be defined for vector- or matrix-valued random ...

  8. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  9. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    Generally, the first k moments are taken because the errors due to sampling increase with the order of the moment. Thus, we get k equations μ r (θ 1, θ 2,…, θ k) = m r, r = 1, 2, …, k. Solving these equations we get the method of moment estimators (or estimates) as m r = 1/n ΣX i r. [2] See also generalized method of moments.